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Abstract—As one of the most popular dimensionality reduc-
tion techniques, locality preserving projections (LPP) has been
widely used in computer vision and pattern recognition. However,
in practical applications, data is always corrupted by noises. For
the corrupted data, samples from the same class may not be
distributed in the nearest area, thus LPP may lose its effective-
ness. In this paper, it is assumed that data is grossly corrupted
and the noise matrix is sparse. Based on these assumptions,
we propose a novel dimensionality reduction method, named
low-rank preserving projections (LRPP) for image classification.
LRPP learns a low-rank weight matrix by projecting the data on
a low-dimensional subspace. We use the Ly; norm as a sparse
constraint on the noise matrix and the nuclear norm as a low-
rank constraint on the weight matrix. LRPP keeps the global
structure of the data during the dimensionality reduction pro-
cedure and the learned low rank weight matrix can reduce the
disturbance of noises in the data. LRPP can learn a robust sub-
space from the corrupted data. To verify the performance of
LRPP in image dimensionality reduction and classification, we
compare LRPP with the state-of-the-art dimensionality reduc-
tion methods. The experimental results show the effectiveness
and the feasibility of the proposed method with encouraging
results.

Manuscript received January 27, 2015; revised May 22, 2015; accepted
July 6, 2015. This work was supported in part by the Natural
Science Foundation of China under Grant 61203376, Grant 61300032,
Grant 61375012, Grant 61362031, Grant 61170253, and Grant 61370163,
in part by the National Significant Science and Technology Projects
of China under Grant 2013ZX01039001-002-003, and in part by the
Shenzhen Municipal Science and Technology Innovation Council under Grant
JCYJ20130329151843309 and Grant JCYJ20140904154630436. This paper
was recommended by Associate Editor X. He. (Yuwu Lu and Zhihui Lai
contributed equally to this work.) (Corresponding author: Yong Xu.)

Y. Lu is with the Tsinghua-CUHK Joint Research Center for
Media Sciences, Technologies and Systems, Graduate School at Shenzhen,
Tsinghua University, Shenzhen 518055, China, and also with the Bio-
Computing Research Center, Shenzhen Graduate School, Harbin Institute of
Technology, Shenzhen 518055, China (e-mail: luyuwu2008 @ 163.com).

Z. Lai is with the College of Computer Science and Software Engineering,
Shenzhen University, Shenzhen 518055, China, and also with the Institute of
Textiles & Clothing, Hong Kong Polytechnic University, Hong Kong (e-mail:
lai_zhi_hui@163.com).

Y. Xu is with the Bio-Computing Research Center, Shenzhen Graduate
School, Harbin Institute of Technology, Shenzhen 518055, China (e-mail:
yongxu@ymail.com).

X. Li is with the Center for OPTical IMagery Analysis and Learning,
State Key Laboratory of Transient Optics and Photonics, Chinese Academy
of Sciences, Xi’an 710119, China (e-mail: xuelong_li@opt.ac.cn).

D. Zhang is with Biometrics Research Center, Hong Kong Polytechnic
University, Hong Kong (e-mail: csdzhang@comp.polyu.edu.hk).

C. Yuan is with the Tsinghua-CUHK Joint Research Center for
Media Sciences, Technologies and Systems, Graduate School at
Shenzhen, Tsinghua University, Shenzhen 518055, China (e-mail:
yuanc @sz.tsinghua.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2015.2457611

Index Terms—Face recognition, image classification, locality
preserving projections (LPP), low-rank representation (LRR).

I. INTRODUCTION

N MANY real applications, such as machine learning,

data mining, image processing, and pattern recognition,
the original data is always very high dimensional. The high-
dimensional data needs high memory requirements and is
computationally expensive. This problem is the so-called
“curse of dimensionality” [1]. To solve this problem, many
methods are proposed for dimensionality reduction. Principal
component analysis (PCA) [2], [3] aims at preserving the
global variance with the minimum reconstruction error by
projecting data on a linear subspace spanned by principal com-
ponent vectors. Linear discriminant analysis (LDA) [4], [5]
searches the projection axes on which data from the same
class are as close as to each other and requires data points
from different classes are as far as possible. LDA has the
over-fitting problem. A novel algorithm is proposed to over-
come this problem without increasing the number of training
samples [6]. However, for the undersample problem, LDA is
not suited to traditional image representation. In [7], a novel
method named general tensor discriminant analysis is pro-
posed as a preprocessing step for LDA. Tao et al [8]
studied the geometric mean for subspace selection and ana-
lyze three criteria which can reduce the class separation
problem.

However, linear dimensionality reduction may fail to dis-
cover essential data structure that is nonlinear. Thus, mani-
fold learning algorithms are proposed to uncover the hidden
semantics and simultaneously preserve the intrinsic geometric
structure of the data. Among the manifold learning meth-
ods, locally linear embedding (LLE) [9], ISOMAP [10], and
Laplacian eigenmaps (LE) [11] are the most popular manifold
learning techniques. LLE not only represents the local geom-
etry by linear coefficients and reconstructs a given sample
by its neighbors but also seeks a low-dimensional embed-
ding which is suitable for reconstruction [12]. However, all
of these nonlinear methods suffer from the out-of-sample
problem [13]. The simplest and frequently used technique is
to learn the explicit linear mappings of the corresponding
nonlinear manifold learning methods [14]. Locality preserving
projections (LPP) [15], [16], a linearization of LE, neigh-
borhood preserving embedding (NPE) [17], neighborhood
preserving projections (NPP) [18], [19], and the linearization
of LLE are proposed to address the out-of-sample prob-
lem. LPP constructs a certain affinity graph by the data
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and preserves the local geometry of the original data. In
order to improve the performance in ranking applications of
LPP, a novel method named semi-supervised LPP (SSLPP)
is proposed [20]. SSLPP introduces the relevance degree
information to the affinity graph in LPP. NPE also aims
at keeping the local neighborhood structure of the data
as LPP. However, NPE uses local squares approximation
to construct the affinity weight matrix. NPP introduces
a linear transform matrix to approximate LLE. Thus, NPP
has the neighborhood property similar to LLE. NPP uti-
lizes local neighborhood relations to learn the global struc-
ture. Kokiopoulou and Saad [21] pointed out that adding the
orthogonality constraint on the projection directions is more
effective for preserving the intrinsic geometrical structure
of the data. Thus, orthogonal LPP (OLPP) [22] adds the
orthogonality constraint to produce orthogonal basis functions
and has more locality preserving power and discriminat-
ing power than LPP. Liu er al. [23] proposed orthogonal
NPE (ONPE) which also requires the basis functions to be
orthogonal. Sparsity preserving projections (SPP) [24] pre-
serves the sparse reconstructive relationship of the data by
minimizing a L; regularization term which different from
many existing dimensionality reduction methods, such as
LPP and NPE. To introduce ranking information into dimen-
sionality reduction, a novel method named ranking graph
embedding (RANGE) is proposed in [25]. RANGE models
the global structure and the local relationships among differ-
ent relevance degree sets. Pang et al. [26] proposed a novel
feature description framework named distributed object detec-
tion. To extract robust features for human detection, a novel
framework is proposed in [27]. Geng et al. [28] proposed
a novel metric learning method named domain adaptation
metric learning for domain adaptation settings. In practical
applications, multiview learning can obtain more information
than an individual view, thus many related works are proposed,
such as large-margin multiview information bottleneck [29],
multiview stochastic neighbor embedding [30], and multiview
intact space learning [31].

However, in real applications, most of the aforemen-
tioned methods preserve the local neighborhood information
and ignore the global structure of the data. Local informa-
tion of the data is easily effected by illumination, corrup-
tions, or noises. Thus, the recognition rate of these methods
may degrade in clustering or classifying tasks with noises
or corruptions. Fortunately, the recently proposed low-rank
representation (LRR) methods have gain attentions for its
robustness on the noise/corrupted data. In the past sev-
eral years, many LRR methods were proposed for robust
classification tasks [32]-[35]. Robust PCA (RPCA) intro-
duces the nuclear norm to recover the subspace structure
from the data corrupted by noises or occlusions [32], [33].
Liu et al. [34] proposed LRR to recover the lowest rank
representation of the data. LRR segments the data drawn
from subspaces and can better captures the global structure
of the data. Zhuang et al. [35] proposed non-negative low
rank and sparse graph (NNLRS) for semi-supervised learning.
NNLRS constructs an informative graph by introducing spar-
sity and low rankness of high-dimensional data. NNLRS-graph
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also can better structure of the
data as LRR.

Conceptually, manifold learning methods construct the
graph by local patches and rely on pair-wise Euclidean dis-
tances. Thus, these methods are sensitive to noises or errors
in data [35]. Therefore, how to learn a robust representative
coefficient matrix for feature extraction is a key problem.
Fortunately, LRR can capture the global structure of data and is
robust to noises and outliers. To effective improve the robust-
ness of the preserving projection-based methods, we propose
to harness local preserving projections, sparsity, and low rank-
ness of high-dimensional data to build a graph. Therefore,
in this paper, we propose a novel dimensionality reduction
method, named low-rank preserving projections (LRPP) for
image classification. First, we assume that data is grossly cor-
rupted and the noise matrix is sparse. The Ly norm is used as
a sparse constraint on the noise matrix and the nuclear norm
as a low-rank constraint on the weight matrix. Then, LRPP
learned a low-rank weight matrix which projecting the data on
a low-dimensional subspace. LRPP keeps the global structure
of the data during the dimensionality reduction procedure and
the learned low rank weight matrix can lower the disturbance
of noises in the data. To verify the performance of LRPP in
image dimensionality reduction and classification, we com-
pare LRPP with the state-of-the-art dimensionality reduction
techniques on six public image databases. The experimen-
tal results show the effectiveness and the feasibility of the
proposed method with encouraging results.

The main contributions of this paper are as follows.

1) This paper integrates the graph learning and the pro-
jection learning into a seamless model. Different from
conventional locality or globality preserving projection
methods, LRPP can learn a novel weight graph which
not only obtains a balance between globality and local-
ity of the data but also obtains strong robustness to the
noisy data by using low rank learning.

2) LRPP shares some advantages of both LPP and other
dimensionality reductions methods. LRPP can learn pro-
jection vectors which transform the data to a new
subspace, which is robust to noises.

3) The technique proposed in this paper can be easily
extended to supervised and semi-supervised scenarios.
According to [36]-[39], the proposed method can also
be extended to other scenarios.

The rest of this paper organized as follows. For the ease of
reading, we review related works in Section II. The details of
the proposed method are introduced in Section III. Section IV
introduces the convergence and the computational complex-
ity of LRPP and its connection with some related works.
Section V shows the experiments results. Finally, we conclude
this paper in Section VI.

For convenience, we present in Table I the important
notations used in the rest of this paper.

capture the global

II. REVIEWS OF RELATED WORKS

In order to the ease of reading, in this section, we briefly
review some related works including LPP, NPE, SPP, LRR,
and RPCA.
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TABLE I
IMPORTANT NOTATIONS USED IN THIS PAPER

data dimensionality, number of the training
points

H, weight coefficient

X data matrix of size mxn
E additive error matrix
A
w

base matrix
coefficient matrix

X, X, data points
VsV, low-dimensinal representations of x, and x;
p projective vector
i, j i=12,...,n, j=12,...,n
A. LPP

Similar to PCA, LPP is also an unsupervised dimension-
ality reduction approach. However, PCA preserves the global
structure of the data whereas LPP keeps the local structure of
the data. The objective function of LPP is defined as follows:

1 n
§ZH1:/||yl'—yj||§ (1)
7

where y; = pTx; and y; = pTxj, i = 1,2,...,n, T represents
the transpose of a vector. H;; is a weight coefficient defined

as follows:
2

The objective function defined in (1) can be rewritten as

1 <& 1< 2
5 2 Hillvi =yl = 5 3 Hilp"x = p"x],
=p'X(D-MX'p=p"XLX"p (3)

where D is a diagonal matrix with its entries being the row
sums of H, i.e., d;; = ZjHij’ L=D—H.

B. NPE

Similar to LPP, NPE is also to keep the local neighborhood
structure of the data. NPE measured the local approximation
error by minimizing the function [17]

2
PN =) |xi— D Nyx; )
i J

where x; are k neighbors of x;. According to [17], a reasonable
criterion for choosing good projection which minimizing the
cost function is

o)=Y |p'xi= ) Nyp'x; )

i J

where N,-j is the optimal solution of (4). To minimize (5),
it can be lead to
Ty iryT
XMX
min 2222 P 6)
r pTXXTp

where M = (I — N)T'(I = N).

C. SPP

LPP and NPE keep local neighborhood information dur-
ing the dimensionality reduction procedure. To preserve the
sparse reconstructive relationship of the data, Qiao et al. [24]
proposed SPP which used the L; regularization to minimize
the following objective function:

pTXSﬂXTp

max ———— 7
. pIXXTp ™

where Sg =S+ 87 — 575 S is constructed as

min||s;|l, s.t. x; =Xs;, | =115 (8)
Si

where Si = [s,-l,...,s,-yl-_l,O, Siit1s ...,Sin]T is an
n-dimensional vector in which the ith element is equal
to zero. I} € R" is a vector of all ones.

For more details about SPP, the readers are referred to [24].

D. LRR

As a subspace clustering method, the basic idea of LRR
is to capture the lowest rank representation in the combina-
tion of the bases in the given dataset. This problem can be
formulated as

mV‘i/n||W||*, s.t. X =AW 9
where A = [ay, ..., aq] is the bases matrix, || - ||« represents

the nuclear norm of a matrix. In real applications, we often
choose the data matrix as the base matrix, thus (9) can be
rewritten as

mwi/n W], s.t. X =XW. (10)

With the noise in the data, the matrix always divided into
two parts

m“i/n Wi +AIEl,, st. X=XW+E (11)
where E € R™" is a sparse additive error matrix. | - ||,

denotes certain norm regularization, ||E||, can be written in
||E||i, IE||l1, and |E|21 in different cases.

E. RPCA

PCA has been used in many fields as one of the most impor-
tant dimensionality reduction techniques. However, PCA is
sensitive to outliers or gross corruptions of the data. To
overcome these shortcomings of PCA, RPCA [32], [33] is
proposed to recover the subspace structure from the original
data including gross errors [40], [41].

RPCA assumed that the observed data matrix can be decom-
posed as X = X + E € R™*", where X € R™*" is an original
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low rank data matrix and E € R™*" is a sparse additive error
matrix. The objective function of RPCA is defined as follows:

Ipinrank(f() +allEllg,st. X=X+E (12)
X,E

where o is a positive parameter, and || - ||o is the Ly norm
of a matrix. Due to the optimization problem (12) is non-
convex and no efficient solution can obtained, (12) is usually
transformed to the following convex problem by relaxing the
rank function and the Ly norm into the nuclear norm and the
L1 norm, respectively:

min||X|, + «||Ell;,s.t. X=X+E (13)
X.E

where || - ||« is the nuclear norm, |-||; denotes the L; norm of
a matrix and o > 0 is a parameter.

III. LOW-RANK PRESERVING PROJECTIONS

In this section, we introduce the details of the proposed
method, i.e., LRPP. We first present the motivation of LRPP,
and then describe the objective function of LRPP and its
solutions.

A. Motivations

LPP constructs an affinity graph to incorporate neighbor-
hood information of the data and transform data points into
a new space and ensure that points are in close proximity
in the original space remained as in the new space. Similar
to LPP, NPE also builds a graph to preserve the local struc-
ture of the data. Adding the orthogonal constraint between the
projection directions can improve the effectiveness for preserv-
ing the intrinsic structure of the data [21]. ONPP and OLPP
encode the orthogonal information and effectively improve
the classification performance. However, these unsupervised
dimensionality reduction methods mainly rely on pair-wise
Euclidean distances, they are very sensitive to noises and errors
in data [35]. These methods only capture the local structure
of the data and ignore the global structure. For corrupted sam-
ples which belong to the same class may distribute far away
from the nearest area. Under this circumstance, the recogni-
tion rate of LPP, NPE, and their modifications will be greatly
degraded. Therefore, how to deal with this problem is of vital
importance.

Fortunately, recent research indicates that LRR can capture
the global structure of the data and the low-rank properties
have great robustness to corruptions and even can recover
the true data [34]. Therefore, these low-rank properties can
be integrated into dimensionality reduction to address the
sensitivity of the locality-based or neighborhood-based dimen-
sionality reduction methods such as LPP, NPP, and their
modifications. The key idea is to effectively utilize the low-
rankness of high-dimensional data to build an informative
graph and capture the global structure of the noisy data for
dimensionality reduction. Thus, in this paper, we propose
a novel dimensionality reduction method, named LRPP for
image feature extraction and classification. Assuming the
data is grossly corrupted, we use the Ly; norm as a sparse
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constraint on the noise matrix and the nuclear norm as a low-
rank constraint on the weight matrix. LRPP learns a low rank
weight matrix to capture the globality of the data, which is
preserved when the data is projected on a low-dimensional
subspace. LRPP effective captures the global information of
the data and also keeps the low rank information of the
data during the dimensionality reduction procedure.

B. Objective Function of LRPP

The conventional LPP and its modifications methods mainly
use the pair-wise Euclidean distances to capture the locality
of the data. These methods are very sensitive to noises and
errors in the data. However, LRR can better capture the global
subspace structure of the data and is more robust to noises and
outliers [34], [35]. To improve the robustness of LPP, we use
low rankness of the data to construct an affinity graph, with
the assumption that noises of the data are sparse.

Let X = [x1,...,x,] € R™" be a data matrix in which
each column represents a sample. Each sample of X can be
represented by a linear combination of basis matrix A =
lai, ..., a4]

X = AW (14)

where W = [wq, ..., w,] is the coefficient matrix. However,
in real applications, data is usually corrupted by noises or
outliers. We suppose noise matrix E is sparse. Thus, (14) can
be reformulated as

X = AW + E. (15)

In order to preserve the low rankness of the dataset for feature
extraction so as to uncover the true representative relationship
of the data and be robust to noises, we propose the following
rank and Lp; minimization problem:

I ¢ T T, |2
5 2 Wi+ W) |p"xi = p

ij
+ arank(W) + BEll;
st. X=AW+E

min
p.W.E

(16)

where p is a projection vector which transform data into a new
subspace, and «, B are positive parameters, and ||El2; =
Z}il vV Z?:l (Eu)2

The first term in model (16) (i.e., Z?J(W,-j + Wji)llpTXi _
pij||%) is used to learn a novel weight matrix and project
data on a new subspace. In this process, noises in the data are
weakened to ensure samples of the same class distribute in
the same area. The second term of (16) [i.e., arank(W)]
ensures that the learned weight matrix has a low rank. In this
way, the global structure of the data is well preserved. The
last term of (16) is used to ensure that the noise matrix is
sparse. The proposed model (16) is totally different from LPP,
NPE, and their modifications which only considering the local
information of the data. LRPP effectively encodes the global
structure of the data and the learned weight matrix enhances
the separate ability. The problem (16) is NP-hard and not easy
to solve, so we relax rank(W) into its nuclear norm ||W||,
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(i.e., the sum of singular values of W) [33]. The problem (16)
can be rewritten as [34]

n

1
3 Wy Wi [p7xi = pT ] + @l Wi + BIEL,

min
PW.E =
ij
st. X=AW+E. a7
Suppose there is a linear mapping such that y; = p’x; and

y; = plxj, then (17) can be formulated as

1 n
5 D Wi+ W) [y =15 + Wl + BIEIL,
iJj
st. X=AW + E.

min
p,W.E

(18)

In the following section, we will show how to solve (18) by
using the linearized alternating direction method with adaptive
penalty (LADMAP) [42].

C. Optimization of LRPP

We use the LADMAP [42] to solve (18). In the model of
LRPP, we choose A as X itself. We first introduce an auxiliary
variable J in order to make the objective function separable

min

1 n
Jmin 5 3+ T5) i = s + @l Wi+ BIENL,
WE, 22

st. X=XW+E, W=J. (19)

The augmented Lagrangian function of problem (19) is
LW, J,E,p, M1, M>, )

1 2
=5 2 Wi+ i) [y = 5 + Wil + BIENy
ij
4+ M, X —XW —E) + (M, W —J)
w
+ S(Ix—xw—EI} + 1w - JI})

1 n
= 5 2+ J5) i =yl + @l Wi+ BIE ]
i.j

(e ]

— 5 (005 + 100217

M22
+||W—-J+—
F

m
(20

where M; and M, are Lagrange multipliers, © > 0 is
a penalty parameter, and ||| denotes the Frobenious norm
of a matrix. The problem (20) is unconstrained and it can be
minimized with respect to W, J, E, p by fixing other variables,
respectively.

In the next sections, we give the updating rules of each
variable.

D. Computation of W

We show that the updating rule about W that solves the
optimization problem in (20) can be expressed in terms of
J and E.

Given J, E, and p, the terms in (20) that depend on W are

M
aIIWII*+EH HW T+ 22
2 2 “olp
(21)
Then, the updating rule about W in (20) can be rewritten as
. My |?
argmin o|W|,+ =|X—-XW—-E+ —
w 2 HollF
Mo |12
JFEHW—JJF—2 (22)
2 woAlF

which can be solved by LADMAP [42] and singular value
thresholding (SVT) operator [43].

E. Computation of J
When computing J, we can rewrite (20) as

n 2

1 2 MU M,
iy 20+l w4 52

(23)

To obtain the updating rule for J, we first fix W and E. Let
Bij = |lyi — yj||% and M = W + %, (23) can be rewritten as

n

1
min > Z(J,] + Jji)Bij +

ij

7

5 IM = T (24)
The model (24) can be rewritten as

1 & nw 2
5 > (i + i) Bij + S IM =il
i.j

1
= STr(n (7 + J") © B)) + %IlM —JlI7

1 1
= STr(hU @ B) + STr(1(J7 © B)) + %TrHM i
! 1 T, M 2
=5 XijBi;J;i +3 XijBi;J:i +5 Xi}M,»; —1:)3
ZEZB"J"_‘_EZ(M.' EZB..JT
2 [ 254 4 I 2 l vy
+ 7 Z

where B;. represents the ith row of matrix B, B.; represents
the ith column of matrix B, I; represents the matrix whose
elements are all 1, ® is a Hadamard product operator of
matrices.

For the ease of reading, let By = B;., M1 = M;., J1 = J;., and
J=J f . Then, we iteratively solve the following minimization
problems across different classes:

Y (min Lo+ B — 1,2
; Ji2 4

— )5+

- IJT (25)

(26)

and

27)

> (min Lpin+ 2o, —11)3).
- b 2 4

Both problems (26) and (27) are convex and smooth, they
have analytic solutions. We can obtain the optimal solution
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Ji of (26) and the optimal solution J; of (27) by solving the
derivatives with respect to J; and J,, respectively. We define
the weight matrix J as

J=(f+73)/2

F. Computation of E
Given W, p, and J, the terms of E in (20) are

. iz M |?
min B||Ell,; + = (| X —XW - E+ — (28)
E 2 Mmool F
LetV=X—-XW+ % (28) can be rewritten as
. w
min Bl|Ell2; + 5 IV = Ell7- (29)

According to [44], we can solve (29) via the following lemma.

Lemma 1: Let V be a given matrix. If the optimal solution
to miny «||Ell21 + (1/2)||E — V||12F is E*, then the ith column
of E* is

IV1.i], — e .
—tV.; if [[V].i], > «
||[V]:,iH2 “ ||2

0, otherwise.

[, = @0

G. Computation of p

For the given W, J, and E, after some simplifications and
elimination, (20) can be formulated as

n

1
min > > (/i + Jj) Iy = %15 3D
ij
Let H= (1/2)(J + JT), (31) can be reformulated as
n
min > Hyyi =) > (32)

ij
Model (32) can be rewritten as

n n
S Hylyi—yila = Hillp x5~ x5
7 7

n n
=2 ZpTx,-H,-jxiTp — ZpTxiHijxj-Tp
ij i.j

=p'X(D-H)X"p
=p'xLx"p (33)
where D;; = Zj Hj, L = D — H. The matrix D provides
a natural measure on the data points and the importance of
y; is corresponding to the value of Dj; [15]. Therefore, we
impose a constraint as follows:

yiDy =1=p'xDx"p = 1. (34)
Then, the minimization problem (33) reduces to finding

arg min pTXLXp. (35)

pTXDXTp=1

To solve the optimal solution of (35) is identical to solve the
following generalized eigenvalue problem:

XLX"p = 2XDX7p. (36)
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Algorithm 1 LRPP
Input: Training set X; and parameter «, 8 in (16);
Initialization: W =0,J =0, E=0,M{ =0,M, =0,
uw=>0,p0p>0,A; >0, and 1 > 0.
repeat

1. Update W by (22):

. % M |?
argmina||W|,+ =X —XW —-FE+ —
g x5
w HollF
Mo 12
JFEHW—H—2
2 KolF

2. Update J by (26) and (27):

3 min ~B1J1 + My — 1))
; J1 2 4

Z min 13112 + B - 112)3
; J 2 4
3. Update E by (29)
. " 2
E —|lV—-E
min BIEN + S IV — El7
4. Update p by (36)
XLX"p = AXDXTp
5. Update Lagrange multipliers as follows:

M, =M + pn(X —XW — E);
My = My + w(W —J).

6. Update i by u = min(pp, max p).

7. Update t =1+ 1

8. Obtain the optimal solution (W, J, E, p)
QOutput: The projection vector p.

The definitions of L and D in our method are different of
LPP. The algorithm steps of LRPP are outlined in Algorithm 1.

IV. ANALYSIS AND COMPARISON

In this section, we analyze the convergence and the com-
putational complexity of LRPP and its connection with some
related methods.

A. Convergence Analysis

The convergence of the exact LADMAP algorithm has
been generally proven in [42]. There are four blocks
(including p, W, J, and FE) in Algorithm 1 and the objective
function (19) is not smooth, it would be not easy to prove
the convergence in theory. Step 1 in Algorithm 1 is obtained
by SVT operator, its convergence has been proven in [43]. To
derive the solution of (25), we iteratively solve (26) across
different classes i. During each iteration of minimizing (26),
the variable to be minimized is J.;, while the remaining vari-
ables are fixed. For each iteration, (26) and (27) are convex,
so they have analytic solutions and convergent. The conver-
gence of step 3 is also proven in [44]. With four variables,
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the optimization problem (25) is convergence, and thus a local
(or even a global) minimizer can be expected.

B. Computational Complexity

In this section, we give a computational analysis of
Algorithm 1. The major computation of LRPP algorithm is
in steps 1 and 4. Step 1 requires computing the singular value
decomposition [45] of a n x n matrix. Step 4 requires solv-
ing a generalized eigenvalue problem. Thus, we just give the
complexity about these two steps in LRPP. We use A = X
in this paper, the computational complexity of step 1 is at
most O(m?n). The complexity of step 4 is O(m>). Considering
the number of iterations, the complexity of Algorithm 1 is
O(t(m>+m?n)), where ¢ is the number of iterations. Therefore,
assuming that m > n, the upper bound of the complexity of
Algorithm 1 is o@tm?).

C. Comparison With Related Works

As a popular dimensionality reduction method, LPP obtains
widely attentions. LPP preserves the local structure of the
data by recovering the intrinsic nonlinear manifold structure
of the original space. The weight graph constructed in LPP is
simply used the nearest neighbor points based on the Euclidean
distances as the metric. Thus, LPP is sensitive to noises or
corruptions in the data. LRPP not only introduces the low-
rank property to keep the global structure of the data but also
weakens the disturbance of the noise in the projection sub-
space. When o« = B = 0, the main part of the optimization
problem (16) is degraded to the model of LPP, thus LPP is
a special case of LRPP.

SPP and NPE have similar objective functions. Both of them
are related to LLE. In fact, NPE is a linearized version of LLE
and SPP actually is a regularized extension of NPE. While
LRPP constructs the weight matrix in a completely different
manner from NPE and SPP, which use the least squared recon-
struction error and sparse reconstruction error, respectively.
In particular, LRPP constructs the weight graph using all the
training samples with low-rank constraint instead of k nearest
neighbors.

Both OLPP and ONPE add the orthogonality constraint to
improve the locality preserving power and reconstructive abil-
ity. However, OLPP and ONPE construct the weight matrix
using the k nearest neighbors the same as LPP and NPE,
which are completely different LRPP. LRPP proposes to har-
ness local preserving projections, sparsity, and low rankness
of high-dimensional data to build a graph. The sparsity and
local preserving projections can capture the local relationships
of the data, and the low rankness can better recover the global
structure of the data. LRPP requires that the coefficient vectors
of all data samples from a low-rank matrix.

LRR use the lowest rank representation to construct the
affinities of an undirected graph to capture the global struc-
ture of the whole data. The solution of LRR can be solved by
a nuclear norm minimization problem. Similar to LRR, LRPP
also use a nuclear norm minimization to solve the optimiza-
tion solution of the weight matrix. Without the first term, (16)
is degraded to the optimization model of LRR. Thus, we can

0/é?¢%é78¢

Fig. 1. Some images from (a) ORL, (b) FERET, (c) CMU PIE,
(d) AR, (e) COIL20, and (f) MNIST.

Fig. 2. Six basis vectors of LPP, NPE, and LRPP calculated from the training
set of the ORL database. (a) LPPfaces. (b) NPEfaces. (c) LRPPfaces.

take LRR as a special case of LRPP. However, LRPP learns
the optimal weight matrix and the projection at the same time,
which is totally different from LRR.

V. EXPERIMENTS ANALYSIS

In this section, to systematical evaluate the performance of
the proposed method, i.e., LRPP, we verify the classification
performance of LRPP in terms of random pixel corruptions,
various level contiguous occlusions and the realistic occlusions
(i.e., sunglasses and scarf).

A. Databases

Six different publicly available databases were used
in our experiments, ie., ORL [46], CMU PIE [47],
FERET [48], AR [49], COIL20 [50], and MNIST [51]
databases. Fig. 1 shows some example images from the above
six databases. The first five databases are used for testing the
performance of LRPP in image classification. The MNIST
database is used for testing the performance of LRPP in
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handwritten digit recognition. The corresponding experiments
on the MNIST database are given in Section V-G.

The ORL face database composes of 40 distinct subjects.
All subjects are in up-right, frontal position (with tolerance
for some side movement). The CMU PIE database contains
41368 face images collected from 68 subjects. Each subject
has 13 images of different poses, 43 different illumination
conditions, with four different expressions. In our experi-
ment, a subset of five near frontal poses (C05, C07, CO09,
C25, and C29) and illuminations indexed as 08 and 11 was
used. Therefore, each subject has ten images. The FERET
database [48] used for evaluating face recognition algorithms
displays diversity across gender, ethnicity, and age. The image
set was acquired without any restrictions imposed on facial
expression and with at least two frontal images shot at different
times during the same photo session. For the FERET database,
we randomly choose 70 people and six images of each sub-
ject to construct a subset. Thus, the total number of images
is 420. The AR [49] face database contains over 4000 color
face images of 126 people (70 men and 56 women), including
frontal views of faces with different facial expressions, lighting
conditions, and occlusions. The pictures of most persons were
taken in two sessions (separated by two weeks). Each section
contains 13 color images and 120 individuals (65 men and
55 women) participated in both sessions. In our experiments,
we choose a subset of the AR database consisting of 50 men
and 50 women. The COIL20 [50] database contains 20 objects
and each object has 72 gray images which are taken from dif-
ferent view directions. All images in these five databases were
normalized to 32 x 32 pixels and each image was reshaped to
a vector.

B. Baselines and Parameter Setting

In our experiments, we test the performance of the proposed
method on random pixel corruptions, various level contigu-
ous occlusions and the realistic occlusions. We used the ORL,
PIE, FERET, and COIL20 databases to test the performance
of LRPP with the data containing random pixel corruptions
and various level contiguous occlusions. For the ORL, PIE,
and FERET databases, we randomly select half of the images
per class as training samples, i.e., five, five, and three images
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Classification accuracy versus (a) with fixed and (b) with fixed on the ORL, FERET, and PIE database with the salt and pepper noise.

Database | Clear data (32x32 pixel) Den.=0.15

ORL

FERET

PIE

COIL20

Fig. 4. Some examples of the original and corrupted images under different
densities (Den.) of the salt and pepper noise from the ORL, FERET, PIE, and
COIL20 databases.

per subject, respectively. For the COIL20 database, we ran-
domly select 30 images per class to construct the training
set, the rest samples are constructed the test set. The AR
database was used for testing the classification accuracy of
LRPP about face images with sunglasses and scarf occlu-
sions. We compare our method with the algorithms of LPP [1],
NPE [17], OLPP [22], ONPE [23], SPP [24], LRR [34], and
RPCA [33]. In our experiments, we selected values for « and
B in the range [0, 100]. According to the experiments, we can
obtain the best classification accuracy when the parameters
values are chosen in the range [0.001, 10]. Fig. 3 shows classi-
fication accuracy versus « with g fixed, and B8 with « fixed on
the ORL, FERET, and PIE database with the “salt and pepper”
noise. In this experiment, we randomly selected half images
from each subject as training samples and the rest as test sam-
ples. These trails were independently conducted ten times, and
the average classification accuracy was reported. The nearest
neighbor classifier based on the Euclidean distance as the met-
ric is used to calculate the percentage of samples in the test
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Fig. 5. Classification accuracies of LPP, NPE, OLPP, ONPE, SPP, LRR, RPCA, and LRPP on the ORL, FERET, PIE, and COIL20 databases with the salt
and pepper noise. Experimental results on (a) ORL database (noise density = 0.1), (b) ORL database (noise density = 0.15), (c) FERET database (noise
density = 0.1), (d) FERET database (noise density = 0.15), (e) PIE database (noise density = 0.1), (f) PIE database (noise density = 0.15), (g) COIL20 database
(noise density = 0.1), and (h) COIL20 database (noise density = 0.15).

set that were correctly classified. Based on the training set of C. Robustness Test With Random Pixel Corruptions
the ORL database, six LPPfaces, NPEfaces, and LRPPfaces In order to test the robustness of LRPP of the data with
are shown in Fig. 2. random pixel corruptions, we add the salt and pepper noise
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Fig. 6. Some examples of the original and corrupted images under different levels of contiguous occlusions from the ORL, FERET, PIE, and COIL20 databases.

into ORL, FERET, PIE, and COIL20 databases. The salt
and pepper noise added into the data with two different
densities: 0.1 and 0.15. Fig. 4 shows some images of the
original and corrupted images under two different densi-
ties of the salt and pepper noise from the ORL, FERET,
PIE, and COIL20 databases. Fig. 5 shows the classifica-
tion accuracies of LPP, NPE, OLPP, ONPE, SPP, LRR,
RPCA, and LRPP with different dimensions on random
pixel corruptions with two different densities of the salt and
pepper noise.

It can be found that LRPP outperforms the other comparison
methods in the subspaces with different dimensions.

D. Robustness Test With Various Level
Contiguous Occlusions

To test the robustness of LRPP of the data with various
level contiguous occlusions, we randomly add some blocks
to different locations in images and keep the remaining part
unchanged. The sizes of blocks in images were set with dif-
ferent sizes: 6 x 6 and 8 x 8. Fig. 6 shows some examples
of the original and corrupted images under different levels
of contiguous occlusions from the ORL, FERET, PIE, and
COIL20 databases. Fig. 7 shows the classification accuracies
of LPP, NPE, OLPP, ONPE, SPP, LRR, RPCA, and LRPP
with different dimensions on the various level contiguous
occlusions.

As can be seen from Fig. 7, LRPP obtains the best recog-
nition rates of the four groups of experiments, which shows
the robustness for block occlusions when there are variations
in illumination and expressions.

E. Robustness Test With Sunglasses Occlusion

In this section, to test the robustness of the proposed method
on the sunglasses occlusion of face images, we conduct exper-
iments on the AR database. We randomly choose three neutral

images plus three images with sunglasses from session 1 as
training samples. The test set is constructed by seven neutral
images plus three images with sunglasses from session 2.
Fig. 8 shows face images of the first subject used in our
experiments. Images in the first row are training samples from
session 1 and images in the second row are test samples from
session 2. Fig. 9 illustrates the classification accuracy in the
case of sunglasses occlusion.

As can be seen from Fig. 9, LRPP has the highest recogni-
tion rate among all the comparison methods. Thus, LRPP is
more robust than the other methods of face images with the
sunglasses occlusion.

E. Robustness Test With Scarf Occlusion

We mainly test the robustness of the proposed method on
the scarf occlusion of face images in this section. Experiments
were also conducted on the AR database. The training set is
constructed by three randomly chose neutral images plus three
images with scarf from session 1. The test set is constructed
by seven neutral images plus three images with scarf from
session 2. Fig. 10 shows face images of the first subject used
in experiments. Images in the first row are training samples
from session 1. Images in the second row are test samples
from session 2.

G. Experiments on the MNIST Database

In this section, we conduct experiments on the MNIST
database [51] to verify the performance of LRPP in hand-
written digit recognition. The MNIST database contains
60000 training samples and 10000 test samples. The size of
each image is 28 x 28. The task is to classify each image into
one of the ten digits. The writers of the training set and test
set are different. Fig. 12 shows some images of the original
and corrupted images under two different densities of the salt



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LU et al.: LRPP 11

Experimental results on the ORL database (Occlusion size=6%6) Experimental results on the ORL database (Occlusion size=8x8)

0.65 T
e NI T g g RREE
st o

[t
o

o
e
&
T
y

T T S ]
0.55 j‘y - B
//

A

14
IS

o
@
&

=3
N
&

Classification accuracy
Classification accuracy
o
w

0.2

50 100 150
Dimensions Dimensions

(@ (b)
Experimental results on the FERET database (Occlusion size=6x6) Experimental results on the FERET database (Occlusion size=8x8)
0.8 T T 0.7 T T

=
R
P

0.6
0.6
0.5
> >
g g
5 05 5
g g 04
5 04 g
T T
g S o3
203 K
o o
&) o
0.2
0.2
0.1 0.1
—%— LRPP
0 c ¢ 0 ¢ ¢
0 50 100 150 0 50 100 150
Dimensions Dimensions
(©) (d)
Experimental results on the PIE database (Occlusion size=6x6) Experimental results on the PIE database (Occlusion size=8x8)
0.9 T T 0.9 T T
#
?/%%,ﬁ-fﬁ—wﬁ—?} ks
08t e . 08
- 4 07
> S >
o 1 o 06
4 g
5 5
3 3
8 , 8 05
c <
i< k]
g h g o4
i b
8 &
[ l o 03
il 0.2
Nl 0.1%
—+#— LRPP
0 : : 0 : :
0 50 100 150 0 50 100 150
Dimensions Dimensions
(e) ®
Experimental results on the COIL20 database (Occlusion size=6x6) Experimental results on the COIL20 database (Occlusion size=8x8)
0.8 T T 0.7 T T =
e
0.7 0.6
0.6 0.5
> >
) 3
8 8
3 3
g 05 g 04
c <
2 k]
T T
g 04 g 03
& <
? @
8 K.}
&) o]
0.3 0.2
0.1
01 { : : — 0 : :
0 50 100 150 0 50 100 150
Dimensions Dimensions

(2 (h)

Fig. 7. Classification accuracies of LPP, NPE, OLPP, ONPE, SPP, LRR, RPCA, and LRPP on the ORL, FERET, PIE, and COIL20 database with different
block occlusions, respectively. Experimental results on (a) ORL database (occlusion size = 6 x 6), (b) ORL database (occlusion size = 8 x 8), (c) FERET
database (occlusion size = 6 x 6), (d) FERET database (occlusion size = 8 x 8), (e) PIE database (occlusion size = 6 x 6), (f) PIE database (occlusion
size = 8 x 8), (g) COIL20 database (occlusion size = 6 x 6), and (h) COIL20 database (occlusion size = 8 x 8).

and pepper noise from the MNIST database. In our experi- 5000 test samples to construct the test set. Fig. 13 illustrates
ments, we randomly select 3000 images from 60 000 training the classification accuracy of the MNIST database with the
samples to construct the training set and randomly select salt and pepper noises.
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H. Observations and Discussions

From the experimental results, we can obtain the following
observations and discussions.

1y

Although the orthogonality information was introduced
in OLPP and ONPE, LRPP still performed better
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and LRPP on the MNIST database with the salt and pepper noise.

Density of the salt and pepper noise are (a) 0.1 and (b) 0.15.

2)

3)

than OLPP and ONPE, which indicates that combin-
ing projections and LRR for robust images classification
provides more discriminative information than orthogo-
nality constraint on the projections.

LRPP was more robust than the other compared methods
and both OLPP and ONPE outperformed LPP and NPE
in different dimensional subspace. That is, with increas-
ing number of dimensions, OLPP and ONPE are more
effective than LPP and NPE.

LRPP performed better than LPP and NPE, which indi-
cates that globality is more important than locality in
the robust image classification. In addition, LPP and
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NPE almost have the similar classification accuracy,
which indicates that using the Euclidean distances as the
metric to measure the local geometric structure could
not always improve the performance of robust image
classification.

From Figs. 5, 7, 9, 11, and 13, we can see that LPP
and NPE have lower classification accuracies among
the comparison methods. This is because that the per-
formance of LPP and NPE depend on the pair-wise
Euclidean distances which is sensitive to the data cor-
rupted with noises or errors. LRPP obtains the best
classification performance due to the fact that it cap-
tures the global structure of the data to explore the latent
discriminant information.

VI. CONCLUSION

this paper, we encode preserving projections, sparsity,
low rankness of images data to build a graph and pro-
a novel dimensionality reduction method, named LRPP

for image feature extraction and classification. LRPP well cap-
tured the global structure of the data and learned a low-rank
weight matrix by projecting the data on a low-dimensional
subspace. The Ly norm is introduced as a sparse constraint on
the noise matrix and the nuclear norm as a low rank constraint
on the weight matrix. Experimental results on six well-known
databases showed the excellent performance of LRPP against

the

state-of-the-art preserving projection methods in robust

image classification. It is shown that LRPP is robust to con-
tiguous occlusions, random pixel corruptions, sunglasses and
scarf occlusion of face images.
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